Skip to main content

Multiple Dosage Regimen

Drug kinetics after multiple dosing

Pharmacokinetics of multiple dose

     The purpose of the multiple dosing is to maintain a desired plasma level of drugs for long periods of time.
     The plasma level obtained from each succeeding dose is always higher than those obtained from the previous dose since some drug remains in the plasma when repeated doses are administered. Since the rate of elimination is proportional to the amount of drug in the body, it increases with the increasing amount of drug until it approaches the rate of input (rate of input=rate of output). At this point the amount reaches a plateau in the body. (Rate of input=rate of output).
     The main difference is the fluctuation in the plasma concentration due to multiple dosing.
2
              Dosage regimen:
size of the drug dose frequency of drug administration, i.e. time interval between doses (τ: tau)
              Pharmacokinetic parameters obtained from single dose administration are used to predict drug plasma levels during a multiple-dosage regimen. The principle of superposition assumes that early doses of drug do not affect the pharmacokinetics of the subsequent doses.
11/3/2015                                                                                                                                            5
     AUC0-∞= AUC0-τ
     If the drug is administered at a fixed dose and fixed dosing interval (τ), the amount of the drug in the body will increase and then plateau to a mean plasma level higher than the peak Cp obtained from the first dose.
     This is known as “steady state”, at which the plasma drug levels fluctuate between Cpssmax and Cpssmin
6

  The average Cpssav is calculated by dividing the AUC for a dosing interval (AUC0-τ) by τ, at steady state
  Regardless of the route of administration:
Cpssav = F×D0 = F×D0 = AUCss0−τ = AUC0−∞
                  CL×τ Vd×kd×τ      τ           τ
  Accumulation factor (R): Cpssmax  Cpssmin
     =    max = min =
           C1 C1      1e
11/3/2015                                                                                                                                            7
  The maximum accumulation of drug in the body can be given in terms of the administered dose as:
1.44 t
          X/Xo =  =   1/2    , where:
X: is the maximum drug accumulation
Xo: is the amount after first dose
                                                                                                                                                                                                                   : dosing interval
  Therefore, when the dosing interval is equal to the half-life of the drug, the maximum accumulation will be 1.44 times the administered dose.
8
     As the frequency of dosing increases the accumulation level also increases.
     For example:
If the dosing interval is one-fourth the half-life, the maximum accumulation is 5.76 times the administered dose.
     Therefore, a desired plateau level can be achieved either by:
Selecting a dosing interval and adjusting the dose or By changing the dosing interval to give a fixed dose
     Drug accumulation is not a phenomenon that depends on the property of a drug.
     Accumulation is the result of the frequency of administration relative to half-life.
10

   Some fluctuation is always present and the percentage of fluctuation is given by:
                               %       =                        ( − )
   This means that the fluctuation in the plasma concentration is only a
. function of the drug half life ( . = ) or the dosing interval.
   Since the half life of drug is constant, the adjustment in the dosing interval is required to achieve desired fluctuation.
   If a drug is administered more frequently (smaller τ), the fluctuation decreases and reaches a limit of (0) percent fluctuation when the dosing interval is zero as in the case of constant intravenous infusion.
      11/3/2015                                                                                                                                            11
For a given drug in multiple-doses, the time required to reach steady state is dependent on the t1/2 of the drug and is independent of the size of the dose, length of τ, and number of doses.
For a drug given at the same dosing rate (e.g. 20 mg/h: 120 mg/6h, 240 mg/12h, or 480 mg/24h), the Cpssav will be the same, but fluctuation between Cpssmax and Cpssmin will vary.
12

  The rate with which the plateau level is reached is dependent only on the elimination half-life.
  It will therefore take one half-life to reach 50% of the plateau level (Cpss), and 3.3 half-lives to reach 90% of the maximum level.
                              × = × (1 − ×)
tss (90%) = ‒ ln(0.1)/ k = 3.3 t1/2
11/3/2015                                                                                                                                          13
  At steady state:
Rate in (input) = Rate out (output)
F×D/τ= CL×Cpss
  Regardless of the route of administration:
Cpssav = F×D = F×D = AUC0−τ = AUC0−∞
                CL×τ Vd×kd×τ     τ          τ
14

   Following multiple dosing, the plasma concentration can be estimated by using the following equation:
= D 0 1enkτ × kt
     Cp t                ( kτ ) e
                    Vd  1   e
, where: n = number of doses given, and t = time after nth dose
   As the number of doses (n) approaches infinity (∞), a plateau (steady state) is reached at which the plasma concentration at any time t (post dose) can be estimated by the following equation:
                       D   1
Cpss = 0 ( kτ )×ekt Vd 1 e
11/3/2015                                                                                                                                          15
D
                                Cp   0
Cpssmax= 0kτ ;Cpssmax = −eVdkτ
                            1e 1
Cpssmin = Cp0kτ ×ekτ =Cpssmax ×ekτ
1e
16

  For a continuous i.v. infusion:
Cpt = R (1ekt )= R            (1ekt ) CL    Vd×kd
  After one or more short i.v. infusions: D
Cp t =  (1 ekt )      (modified from above) tinf ×Vd × kd
  After the infusion is stopped:
Cp t = C stop ×ekt
11/3/2015                                                                                                                                          17
For multiple oral dose regimen:
  Before reaching the steady state:
            t F×ka×D0 ⎢⎡ 1−−ee−−nkakaττ ×ekat (11−−ee−−nkkττ)×ekt ⎤⎥⎦
     Cp =             (       )
Vd(kka) 1
  At steady state:
Cpss= F×(ka×D)0 ⎡⎢⎣(11ekτ)×ekt (11ekaτ)×ekat ⎤⎦⎥
Vd kak
18

Cpssmax = F×D0 ( 1kτ )×ektp
                                Vd 1e
Cpssmin = ka×F×D0 ( 1kτ )×ekτ
Vd(kak) 1e
11/3/2015                                                                                                                                          19
  Following a single oral dose:
tmax = 2.3 ×log ka ka k       k
  At steady state:
tp(tmax, ss) = 1 ×ln⎡⎢ka×(1e−−kakττ)⎤⎥ kak ⎢⎣k×(1e )⎥⎦
20

Loading dose (Priming dose)
              It is the dose that provides an effective concentration in the plasma instantaneously The main objective of the loading dose is to achieve the desired (therapeutic) concentration as quickly as possible.
              Oral DL can be calculated as follows:
                       DL0 = ka e k )
                         D (1e      )(1
11/3/2015                                                                                                                                          21
Loading dose
  For extremely rapid absorption or in the case of IV infusion:
                                  DL = 1kτ
                                   D0   (1e    )
  As a general rule, the dose ratio should be equal to 2 if the selected dosage interval τ = t1/2
D
Dose ratio = L D0
22

A rapid approximation of DL may be estimated from the following equation:
= Vd ×Cpssav
    Loading dose (DL)
(S)(F)
,where:
S: fraction of the administered dose which is the active form of the drug F: bioavailability of the drug
11/3/2015                                                                                                                                          23

  After multiple dosing, the maintenance dose required is based on CL, Cpss, dosing interval (τ):
CL×Cpssav ×τ
Maintenance Dose (D0) =
(S)(F)
,where:
S: fraction of the administered dose which is the active form of the drug
F: bioavailability of the drug
  When Cpss & τ are fixed, a drug with a smaller CL would require a smaller maintenance dose.
11/3/2015                                                                                                                                          25


3- Check your calculations: By         applying    these equations
to
find
the
corresponding Cpssmin & Cpssav
11/3/2015


27
       Factors that should be considered in designing a dosage regimen:
1.  Activity and toxicity:
¾ Minimum therapeutic dose
¾ Toxic dose
¾ Therapeutic index (Therapeutic window)
¾ Side effects
¾ Dose-response relationships
2.  Pharmacokinetic processes of drugs which can be influenced by dosage form:
¾ Absorption
¾ Distribution
(ADME)
¾ Metabolism
¾ Excretion
3.  Clinical state of patients:
¾ Age, Weight, Urine pH, Condition being treated, Existence of other diseases.
4.  Other factors:
¾ Tolerance
¾ dependence
¾ Drug interactions
11/3/2015
28

Reference
Applied Biopharmaceutics & Pharmacokinetics by Leon Shargel, Susanna Wu-Pong (4th edition): Chapters 15 & 17
11/3/2015                                                                                                                                            29


Comments

Popular posts from this blog

Jashan-e-Mefang: Celebrating the Return of Light in Baltistan

جشنِ مے فنگ – 21 دسمبر پس منظر، تاریخ اور منانے کی وجوہات  جشنِ میفنگ (Mefang / Mehfong) بلتستان کا ایک قدیم ثقافتی تہوار ہے جو ہر سال 21 دسمبر کو منایا جاتا ہے۔ یہ دن موسمِ سرما کے انقلاب (Winter Solstice) کی علامت ہے، یعنی سال کا سب سے چھوٹا دن اور سب سے طویل  رات۔ اسی دن کے بعد دن بتدریج لمبے ہونا شروع ہو جاتے ہیں۔ تاریخی پس منظر جشنِ میفنگ کی جڑیں بلتستان کی اسلام سے قبل کی قدیم تہذیب میں پیوست ہیں، جب یہاں کے پہاڑی معاشرے فطرت، سورج اور موسموں کی گردش پر گہری نظر رکھتے تھے۔ شدید سردی، طویل راتیں اور محدود وسائل انسان کی بقا کے لیے بڑا امتحان ہوتے تھے۔ 21 دسمبر کو سورج کی واپسی اور روشنی کے بڑھنے کا آغاز ایک امید کی علامت سمجھا جاتا تھا، اسی خوشی میں یہ تہوار منایا جاتا تھا۔ اسلام کی آمد کے بعد بھی یہ تہوار مذہبی نہیں بلکہ ثقافتی روایت کے طور پر زندہ رہا اور نسل در نسل منتقل ہوتا رہا۔ جشن منانے کی وجوہات اندھیرے کے خاتمے کی خوشی : طویل راتوں کے بعد روشنی کے بڑھنے کا آغاز بقا پر شکرگزاری : سخت سردیوں میں زندہ رہنے پر اللہ تعالیٰ کا شکر امید اور نیا آغاز :...

Mohtarma Benazir Bhutto Shaheed – The Eternal Voice of Democracy (27 December | Death Anniversary)

 Mohtarma Benazir Bhutto Shaheed – A Martyr of Democracy (27 December – Death Anniversary) Mohtarma Benazir Bhutto Shaheed remains one of the most influential, courageous, and inspiring leaders in Pakistan’s political history. Every year on 27 December, the nation remembers her supreme sacrifice for democracy, constitutional supremacy, and the rights of the people of Pakistan. Early Life and Political Journey Benazir Bhutto was born on 21 June 1953 in Karachi into a prominent political family. She was the daughter of Zulfikar Ali Bhutto, the founder of the Pakistan Peoples Party (PPP) and former Prime Minister of Pakistan. Educated at Harvard University and Oxford University, she emerged as a symbol of intellect, resilience, and political maturity at a very young age. After the execution of her father in 1979 during General Zia-ul-Haq’s regime, Benazir Bhutto faced imprisonment, house arrest, and exile. Despite immense personal suffering, she never abandoned her political struggle ...

13 Rajab: Birth of Imam Ali (A.S.) – History, Significance & Spiritual Lessons

13 Rajab: A Day of Light, Faith, and Leadership 13 Rajab al-Murajjab holds immense spiritual and historical significance in the Islamic calendar. It is universally revered by Muslims across the world as the birth anniversary of Hazrat Imam Ali ibn Abi Talib (A.S.), one of the most influential personalities in Islamic history. This sacred day is not only a moment of joy and gratitude but also a reminder of justice, courage, knowledge, and unwavering devotion to Allah. The Unmatched Birth in the Kaaba One of the most extraordinary aspects of 13 Rajab is that Imam Ali (A.S.) was born inside the Holy Kaaba in Makkah—an honor never granted to anyone else before or after him. According to well-documented historical narrations: His mother, Bibi Fatima bint Asad (R.A.), felt labor pains near the Kaaba The wall of the Kaaba miraculously opened She entered the sacred house and gave birth to Imam Ali (A.S.) inside This miraculous event symbolizes Imam Ali’s unique spiritual status and his lifelon...